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We study the simplest possible order one single-layer perceptron with two inputs, using the delta rule with
online learning, in order to derive closed form expressions for the mean convergence rates. We investigate the
rate of convergence in weight space of the weight vectors corresponding to each of the 14 out of 16 linearly
separable rules. These vectors follow zigzagging lines through the piecewise constant vector field to their
respective attractors. Based on our studies, we conclude that a single-layer perceptron with N inputs will
converge in an average number of steps given by an Nth order polynomial in t

l , where t is the threshold, and
l is the size of the initial weight distribution. Exact values for these averages are provided for the five linearly
separable classes with N=2. We also demonstrate that the learning rate is determined by the attractor size, and
that the attractors of a single-layer perceptron with N inputs partition RN � RN.
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I. INTRODUCTION

Since its advent in 1960, the study of the perceptron and
of neural networks has experienced vast growth. Some fun-
damental characteristics about perceptrons were studied ini-
tially, while more recently several sophisticated and subtle
questions have been addressed by the physics community.
One significant current of research is in online learning,
where amongst other aspects that of ensemble learning �the
combination of many different learning rules� of simple per-
ceptrons has been examined �1�. More recently there has
been an interest in studying the effects of noise on learning
in recurrent perceptron networks �2�, and aspects of conver-
gence for perceptrons with stochastic, binary synapses �3�.
One of the tools used to analyze perceptron generalization
and capacity is the replica method �4�, and this technique has
been used to determine the optimal capacity of ternary per-
ceptrons �5�, the generalization and capacity of large two-
layered perceptrons �6�, as well as to study learning capabil-
ity under mutual information maximization �7�.

Many other techniques for studying neural networks have
appeared in the recent physics literature. For instance, one
important area of current physics research treats the issue of
generating and learning time series, including chaotic time
series, by perceptrons �8–11�. The study of time series gen-
eration by the perceptron is notable in addition as they have
been used to produce limit cycles �11�. Information theory
approaches have also been fruitful in yielding storage capac-
ity values for neural networks with binary weights in good
agreement with the replica method �12�, as well as an infor-
mation gain principle which can give insight on how to

choose training sets and transfer functions for student-
teacher learning paradigm perceptrons �13�. Moreover, it is
remarkable that perceptron learning has also been applied to
biophysics problems, in particular in the context of improv-
ing the pairwise contact energy function in the study of the
protein folding problem �14�.

There are numerous convergence theorems which demon-
strate that a perceptron learning a linearly separable rule will
converge in a finite number of steps �15�. Recently, analo-
gous upper bounds for the number of steps have been proven
for continous perceptrons using online gradient learning �16�
and Boolean multilinear perceptrons �17�. In addition, sys-
tematic studies have been made of the rate of convergence
for perceptrons learning nonseparable rules �18�, and order
of magnitude comparisons were given for learning rates for
batch, online, and cyclic learning �19�.

There have been, however, no studies of visualizing the
convergent weight dynamics of perceptrons, and very few in
studying quantitatively the number of steps required to con-
verge within weight space. In this paper we address these
issues by giving concrete results from direct calculations,
which quantify precisely the mean number of steps the
weight vector travels in weight space according to which
�linearly separable� rule it is learning. Our paper is organized
as follows. In the next section, we discuss in detail the exact
algorithm we used to obtain our results, and explain how the
perceptron learning procedure itself necessarily fills weight
space completely with its attractors. In the section on con-
vergence rates, we outline our calculation for the average
convergence rates, and state these for N=2. Finally we dis-
cuss some implications of these results, and in the conclusion
offer some possible applications and directions for future
research.

II. PERCEPTRON ALGORITHM

We use a cyclic online binary perceptron algorithm �19�,
which we outline as follows. A binary perceptron implements
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a Boolean function which maps Z2
N to Z2. The input vectors

are represented by the real numbers xj =x12N−1+x22N−2+ ¯

+xN, where xi� �0,1�, and 0� j�2N−1. There are 2N pos-
sible input patterns �vectors� since each component can ei-
ther be 0 or 1. The weight vectors are written as wn

k �RN ,0
�n��, where k corresponds to a rule, to be defined below.
Here n is to be thought of as the discrete time, and there are
2N weight components since each input �a component of the
input vector� is weighted by a corresponding component of
the weight vector. The desired output for each of the 2N input
vectors xj is denoted by dj �Z2 , 0� j�2N−1. The actual
output of the neuron y is given by

y�wn
k,xj� = �„wn

kxj + �− 1��k/�22N−1��t…, 0 � k � 22N
− 1.

�1�

Here �−1��k/�22N−1��t is the threshold ��z� denotes the smallest
integer greater than or equal to z� and ��x� is the Heaviside
function, so that the perceptron learning algorithm can be
thought of as a nonlinear map T :RN→RN. The meaning of
Eq. �1� is that the existing weight configuration wn

k specifies

the normal to a hyperplane H= �x�RN �wn
kx+ �−1��k/�22N−1��t

=0�. Whether y�wn
k ,xj� is one or zero thus determines

whether the perceptron currently “perceives” that the input
vector xj should be on one side of the hyperplane or the
other. Thus learning in this context means the perceptron
embodies a plane which properly separates the input vectors
into two classes, which fall on either side of the plane. In-
deed, there is a set of such hyperplanes, each one corre-
sponding to a “rule” which the perceptron can learn. A rule
specifies an output for each of the 2N input vectors. dk

= �dj
k�0�j�2N−1 ,0�k�22N

−1 can be thought of as a 2N com-
ponent vector which describes a rule �or function� k which
the perceptron should learn, since its components are the
desired outputs corresponding to each of the inputs. Since
the perceptron’s output is either 0 or 1, there are thus 22N

possible rules to consider for the perceptron to learn.
At time n=0 one of these 22N

rules is selected and the
weight vectors are initialized to random values with compo-
nents uniformly distributed in the N-dimensional hypercube
centered at the origin, with faces orthogonal to the coordi-
nate axes, and sides of length 2l, in the weight space RN. For
each time step n, each of the 2N input vectors is presented in
the cyclic online order. Weight vectors are changed accord-
ing to the prescription:

wn+1
k = wn

k + a�dj
k − y�wn

k,xj��xj, 0 � j � 2N − 1, �2�

where a is the adaptation �learning� rate, and j=n mod 2N.
Of the 22N

possible functions to be learned, only a fraction
will be learnable. From Eq. �2�, the rule k has been learned if
the weights stop changing, which is equivalent to the condi-
tion that there exists n0�Z+ such that wn+1=wn, for all n
�n0. In this case y�wn

k ,xj�=dj
k, 0� j�2N−1, and thus the

learning algorithm terminates. If the rule k is not learnable,
then the algorithm never terminates, i.e., limn→� wn

k does not
exist. We discuss this matter further below in connection
with the XOR rule. There is also an equivalent theoretical

notion of learnability, which we state for completeness. Let
the input patterns be separated into two sets, according to
whether the output should be 0 �C0� or the output should be

1 �C1�. We say a rule k ,0�k�22N
−1 is learnable, or “lin-

early separable” if there exists a number �	0 and a weight
�suppressing subscripts and superscripts momentarily� w*

�RN such that

w*x � − �, if x � C0 �3�

and

w*x 	 �, if x � C1. �4�

Note that the definition of linear separability is equivalent to
the existence of a hyperplane Hk�RN−1 which separates the
two sets of input vectors according to whether the desired
output is 0 or 1. Indeed, to see this one takes w* as the
normal to the hyperplane, then the input vectors as points in
RN fall on either side of Hk by the equation for Hk :w*x=0.

We now specialize to the case of N=2, in order to derive
exact formulas for the average convergence rates. A rule k
�Boolean function� is identified by the vector of its four out-
puts dk= �d0

k ,d1
k ,d2

k ,d3
k�, corresponding to input vectors �0,0�,

�0,1�, �1,0�, and �1,1�, respectively. For N=2, 14 of 16 pos-
sible functions are linearly separable. By the symmetry of
the patterns, the number of classes, based on the average
number of steps to converge, is five. There are two attractors
in class I �d0= �0,0 ,0 ,0� and d15= �1,1 ,1 ,1��, two attractors
in class II �d1= �0,0 ,0 ,1� and d14= �1,1 ,1 ,0��, four attrac-
tors in class III �d2= �0,0 ,1 ,0�, d4= �0,1 ,0 ,0�, d11

= �1,0 ,1 ,1�, and d13= �1,1 ,0 ,1��, four attractors in class IV
�d3= �0,0 ,1 ,1�, d5= �0,1 ,0 ,1�, d10= �1,0 ,1 ,0�, and d12

= �1,1 ,0 ,0��, and two attractors in class V �d7= �0,1 ,1 ,1�
and d8= �1,0 ,0 ,0��. We can see why the rules have the
above class structure by the following symmetry consider-
ations. If d2=d3, we say the rule is symmetric, otherwise the
rule is antisymmetric. If the rule is antisymmetric, then in-
terchanging d2 and d3 gives a different rule �which we say is
antisymmetric to the original rule� with equivalent dynamics,

which yields a factor of 2. We say that a rule k̃ has equivalent
weight dynamics to a rule k if given initial conditions that are
reflected across some line or point of symmetry, the average
trajectories of the weights stay reflected in the same way for
the two different rules. The components of the average tra-
jectories, �wi,n	, are defined by

�wi,n	 

1

4
�

m=n

n+3

wi,m, where 1 � i � N . �5�

In this case, it follows that if two different rules have equiva-
lent dynamics, and the initial conditions are isotropic, then
the weight vectors under both rules exhibit the same statisti-
cal convergence properties. We show in Appendix A �appen-

dix statement A.1� that if two rules k and k̃ are antisymmet-
ric, and if the initial conditions are antisymmetric �initial
weight vector reflected across line w1=w2� then
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�w1,4m
k

w2,4m
k  = �w2,4m

k̃

w1,4m
k̃

, m = 0,1, . . . . �6�

Thus two antisymmetric rules with antisymmetric initial con-
ditions have trajectories which coincide every fourth step in
the algorithm. In fact, according to statement A.3 of Appen-

dix A, the average dynamics for antisymmetric rules k and k̃
are antisymmetric given antisymmetric initial conditions:

��w1,n
k 	

�w2,n
k 	

 = ��w2,n
k̃ 	

�w1,n
k̃ 	
, n = 0,1, . . . . �7�

If two rules k and k̃ are opposite �rule k is the opposite of

rule k̃ if d̃k=dk̃�, then the weight dynamics will also be
equivalent under the two rules. In particular, in Appendix A

it is shown �appendix statement A.3� that if two rules k and k̃
are opposite and the corresponding initial conditions for the
weights are reflected through the origin, then the average
trajectories themselves will be reflected through the origin
for the two rules, i.e.,

��w1,n
k 	

�w2,n
k 	

 = − ��w1,n
k̃ 	

�w2,n
k̃ 	
, n = 0,1, . . . . �8�

Thus this yields an additional factor of 2 for the number of
members of each rule class. Hence each class of symmetric
rules, of which there are three, has two members, and each
class of antisymmetric rules has four members. This ac-
counts for all 14 learnable of 16 possible rules.

The XOR rule, d6= �0,1 ,1 ,0� and its opposite �1, 0, 0, 1�
are not learnable, which can be seen by trying to separate by
one line the points �1, 0� and �0, 1� in one class from �0, 0�
and �1, 1� in the other. This also follows from a sufficient
condition for unlearnability. Let xi and xj be two vectors in
one of the classes to be separated, say C0. It follows that if
they are both on the same side of the separating hyperplane,
the line L through these points must lie completely on that
side of the hyperplane. It follows that the classification is
unlearnable if some other line L� connecting two points in C1
intersects the line L. For the case of the XOR rule, take x2

= �0,1� and x3= �1,0�, then the line L through x2 and x3 in-
teresects the line L� connecting the two points �0, 0� and �1,
1� from the other class at the point �1/2 ,1 /2� so that the rule
is not learnable. Thus there are three symmetric rule classes,
with two elements in each class. This accounts for all 14
learnable of 16 possible rules. Note that if the distance be-
tween two randomly situated initial weight vectors were
fixed at random values and this distance were observed over
time for the perceptron attempting to learn the XOR rule, this
value would cycle periodically with various small periods.
This indicates that the XOR rule does not have a chaotic
attractor.

Calculating the weight vectors for the five representatives
of the convergent Boolean functions, the solutions of the
resulting linear inequalities are shown in Fig. 1. As expected,
these figures, which are the “attractors” for the weight dy-
namics, correspond exactly to the attractors found by the

perceptron convergence algorithm in Fig. 2. In Table I we
give the linear inequalitities for each of the five class repre-
sentatives, corresponding to Fig. 1. In general, these in-
equalities for any of the 16 rules take the form

w2�− 1�d1
� t�− 1�d1

, w1�− 1�d2
� t�− 1�d2

,

w2�− 1�d3
� �− w1 + t��− 1�d3

. �9�

From solving the linear inequalities for all 14 attractors we
see that the attractors partition R2 twice as required for N
=2.

III. CONVERGENCE RATES

Consider the learnable functions �classifications� for the
single-layer perceptron with N inputs. We fix the threshold at
±t, where t	0 is small. Then each convergent classification
k corresponds to a finite or infinite attractor Ak�RN for the
weight dynamics. The attractor Ak is a convex set �a cone�
formed by the intersection of two or more hyperplanes.
Given an initial weight probability distribution with prob-
ability density function p�x�, the expected number 
k of
weight changes to converge is given by


k = �
RN

p�x���Ak,x�dx , �10�

where ��Ak ,w� is essentially proportional to the length of the
path from the initial weight vector w to the attractor Ak.
Similarly, the variance �k of the expected number of weight
changes is given by

�k
2 = �

Rn
p�x���Ak,x�2dx − 
k

2. �11�

To find ��Ak ,x�, we recall from Eq. �2� that the average
trajectory of the weight vector is determined by the map:

wn+1 = wn + acR, �12�

where

cR =
1

2N�
j=1

2N

�dj
k − y��wk	R,xj��xj , �13�

and �wk	R denotes a range of weight vectors within the region
R which produce the same output for y. Thus given that the
weight vector’s path will be determined by the initial posi-
tion of the weight vector x=w0 and the rule k, the form
��Ak ,x� takes is

��Ak,x� = �
R�RN

rRdR, �14�

where dR is a distance computed from the direction cR of the
trajectory in R and the location of the next region, and rR is
a rate equal to the number of steps per unit distance traveled
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by the weight vector. The rate rR can be determined from a
and observing which values of j, 1� j�2N, produce weight
changes in region R, and it measures zigzagging on a finer
level than that of the weights as they traverse the different
regions. Since some trajectories travel close along the bound-
aries of the regions, the rate rR was sometimes based on a

best estimate of the trajectory at this finest level. In Appendix
B we give an example calculation of Eq. �20� by using Eqs.
�10� and �12�.

In our investigation, N=2, and we use a uniform probabil-
ity distribution of initial weight vectors on a square of side
length 2l:

FIG. 1. The solutions of the linear inequalities in Table I, corresponding to the attractors of the five learnable classes for the single-layer
perceptron. �a� class I representative �0,0,0,0�, �b� class II representative �0,0,0,1�, �c� class III representative �0,0,1,0�, �d� class IV
representative �0,0,1,1�, and �e� class V representative �0,1,1,1�, Note that these regions coincide exactly with the attractors in weight space
shown in Fig. 2.
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p�x� =
1

4l21��x��l,�y��l�. �15�

Computing 
k and �k
2 for k=1 to 5 from Eq. �10� and �11� for

the five function classes, we find:


1�a,l,t� =
22l3 − 30l2t + 30lt2 − 49t3

48al2 , �16�

FIG. 2. �Color online� The paths in weight space for 250 trials of the converging weight vectors. : beginning point of trajectory. *: end
point of trajectory. �a� class I representative �0,0,0,0�, 
=24.47, �=22.19, �b� class II representative �0,0,0,1�, 
=76.33, �=40.80, �c� class
III representative �0,0,1,0�, 
=43.59, �=34.34, �d� class IV representative �0,0,1,1�, 
=41.44, �=31.04, and �e� class V representative
�0,1,1,1�, 
=37.91, �=27.04. By calculating the mean and standard deviation of the number of steps over these paths, we arrived at
expressions �16�–�25�.

LEARNING RATE AND ATTRACTOR SIZE OF THE… PHYSICAL REVIEW E 75, 026704 �2007�

026704-5



�1
2�a,l,t� =

1

2304a2l4 �356l6 − 504l5t + 804l4t2 + 980l3t3

− 5628l2t4 + 2940lt5 − 2401t6� , �17�


2�a,l,t� =
30l3 − 30l2t + 27lt2 − 11t3

24al2 , �18�

�2
2�a,l,t� =

1

576a2l4 �204l6 + 72l5t − 864l4t2 + 1536l3t3

− 1317l2t4 + 594lt5 − 121t6� , �19�


3�a,l,t� =
103l3 + 93l2t + 97lt2 + 7t3

192al2 , �20�

�3
2�a,l,t� =

1

110 592a2l4 �10 725l6 − 90 018l5t + 207 435l4t2

− 188 788l3t3 + 44 275l2t4 − 4074lt5 − 147t6� ,

�21�


4�a,l,t� =
113l3 + 3l2t + 93lt2 − 7t3

192al2 , �22�

�4
2�a,l,t� =

1

36 864a2l4 �8135l6 + 2874l5t + 5901l4t2

− 2336l3t3 − 4119l2t4 + 1302lt5 − 49t6� , �23�


5�a,l,t� =
44l3 + 84l2t + 42lt2 − t3

96al2 , �24�

�5
2�a,l,t� =

1

9216a2l4 �1424l6 + 2976l5t + 1056l4t2 − 1112l3t3

− 720l2l4 + 84lt5 − t6� . �25�

Following the logic of the above calculation, a generali-
zation shows that the mean number of steps to converge for
a linearly separable rule k for the general case of an arbitrary
number of inputs N is a polynomial in t

l :


k� t

l
;

l

a
 =

l

a
�
j=0

N+1

aj� t

l
 j

, �26�

treating l
a as a parameter, where the N+1 coefficients can in

principle be calculated. Thus by using an appropriate form of
optimization to calculate the coefficients aj in Eq. �26�, our
method can be extended to yield the mean polynomial time
convergence expressions for a perceptron with an arbitrary
number N of inputs.

Note that the formulas we give here are valid within the
range a� t� l, which is a reasonable and normal ordering for
these parameters. In particular our simulations were per-
formed taking the values a=0.15, t=1, and l=10. If any of
these parameters were to approach equality with any of the
others, it is not expected that the above formulas would con-
tinue to be valid. Thus these results come with the caveat that
they should only be used for “typical” ranges of perceptron
neural networks.

IV. RESULTS

Figure 3 shows the histograms of the number of steps to
converge for the five pattern classes, using simulations of
10 000 trials. The corresponding means and variances as cal-
culated from Eqs. �16�–�25� are given in Table II. �In the
simulation and Table II we give the standard deviation, for its
greater qualitative meaningfulness, instead of the variance.�
We find that the simulation results agree very well with the
values given by the calculated expressions for the means and
variances. In particular, four of the five means calculated
agree within a couple of standard errors of the mean �SEM�
with the simulation results. Only one rule, �0, 0, 1, 0� devi-
ated significantly between predicted �39.33� and simulated
�44.39� mean number of steps. This is most likely due to
some error in the calculation of the number of steps along
boundaries of the regions �cf. Fig. 2�.

Figure 2 shows the paths of the weight vectors for 250
trials. In some of these it is clear that a path has a maximum
of three directions, each of which is a straight line �though
on a finer scale this is a zigzag�. This is a consequence of the
form taken by the piecewise constant vector field cR �Eq.
�13��. Only three of the input weight vectors are nonzero,
thus there will be a maximum of three directions. The trajec-
tories are piecewise linear since multiples of the input vec-
tors are always added to the weight vector �cf. Eq. �12��.

V. DISCUSSION

From our method of calculation, it follows that the
smaller the attractor, the slower in general the rate of con-
vergence. This is illustrated by Table I and Fig. 1. On the
other hand, one can interpret our results as showing that
some inputs to the network result in “resonance” �20,21� in
the learning rate. In particular the class of functions corre-
sponding to the outputs �0,0,1,0� and �0,1,0,0� were found to
be resonant under this interpretation, if we disregard the
“output always off” rule, �0,0,0,0�. In a previous study, the
order of magnitude of convergence rate is given as
�P /� log�1/��, where P is the number of patterns and � is

TABLE I. Inequalities corresponding to attractors of Fig. 1, for
the representitives of the five function classes. In Fig. 1 the thresh-
old is set to −t=−1.

Outputs Attractor inequalities

�0,0,0,0� w2� t, w1� t, w2�−w1+ t

�0,0,0,1� w2� t, w1� t, w2�−w1+ t

�0,0,1,0� w2� t, w1� t, w2�−w1+ t

�0,0,1,1� w2� t, w1� t, w2�−w1+ t

�0,1,1,1� w2� t, w1� t, w2�−w1+ t
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the adaptation �19�. This gives for our values of P and �, the
number of learning steps as 21. As shown above, our results
are more precise and they distinguish between the different
learning rules which the earlier studies do not.

Another improvement of our results over previous studies
of perceptron learning performance is our closed form calcu-
lation of the variances of the convergence rates. Recent work
in the field of computational complexity has shown that hard

FIG. 3. �Color online� The histograms of the five different classes for 10 000 trials are shown. �a� class I representative �0,0,0,0�, 

=25.77, �=23.98, �b� class II representative �0,0,0,1�, 
=77.50, �=40.06, �c� class III representative �0,0,1,0�, 
=44.39, �=35.58, �d� class
IV representative �0,0,1,1�, 
=40.24, �=32.45, and �e� class V representative �0,1,1,1�, 
=37.05, �=29.22. Note that four classes have
fairly similar shapes, having their distributions weighted towards the left, while the “AND” rule is centrally distributed. Trials which were
already in the attractors at n=0 were omitted for clarity.
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computational problems may better be tackled by combining
several different approaches �22�, thus detailed knowledge of
learning performance of each component algorithm is cru-
cial. It is interesting to note in connection with these findings
of polynomial �in the variable t

l � time convergence rates on
average the results for P complexity of single-layer percep-
trons learning linearly separable rules, and NP-complete
complexity of two-layer perceptrons �23�. Indeed, our formu-
las suggest that the problem of a single-layer perceptron con-
verging has polynomial complexity, by direct computation of
such polynomials. �Since our expressions give only averages
we cannot claim they guarantee polynomial time conver-
gence.� This dynamic between the single-layer perceptron
polynomial time convergence versus the two-layer percep-
tron nondeterministic polynomial time convergence evokes a
recent result which showed that NP-complete problems ex-
hibit phase boundaries �24� away from which the problems
become easier. Thus �considering a quasicontinuous case�
inputs which transition from the “XOR” rule to the “AND”
rule may be seen to undergo an analogous phase transition in
difficulty. We therefore suggest that a greater understanding
of the relation between P and NP-complete computational
complexity classifications might be obtained by generalizing
our computational approach for two-layer neural networks,
though it is not clear to us at present how to proceed in this
undertaking.

By the same reasoning which led to the result that in-
equalities �9� give 14 attractors which partition R2 twice, it
follows that a similar �though much larger� set of inequalities
corresponding to the linearly separable Boolean functions of
a perceptron with N inputs partitions RN � RN. In particular,
the perceptron must solve the system:

a11w1 + a12w2 + ¯ + a1NwN � t ,

a21w1 + a22w2 + ¯ + a2NwN � t ,

¯ ¯

ak1w1 + ak2w2 + ¯ + akNwN � t ,

a�k+1�1w1 + a�k+1�2w2 + ¯ + a�k+1�NwN � t ,

¯ ¯

a2N1w1 + a2N2w2 + ¯ + a2NNwN � t , �27�

where 1�k�2N, −t is the numerical value of the threshold
�for the higher order rules the threshold will be t�, and the
inequalities were rearranged so that all � appear before any
�, and aij � �0,1�, 1� i�2N, 1� j�N. As with a system of
2N linear equations in N unknowns, there will either be an
infinite number of solutions to this system, or no solution. In
this connection there is a useful question to ask: is there a
deterministic calculation which can always establish, as a
function of k and the coefficients aij, whether or not the
system of inequalities �27� �and thus could the perceptron
learn the corresponding rule� has a solution? We do not have
an answer for this, though we suggest that the answer would
be yes. Nevertheless we can see from the above generaliza-
tion that the set of attractors for the single-layer perceptron
with N inputs is isomorphic to RN � RN. This leads to the
question of how many separate regions into which RN can be
divided.

In the general case of a perceptron with N inputs, we have
a situation of hyperplanes which partition RN into regions in
which the weight dynamics follows straight lines �see Eq.
�12��. If N=2, then the hyperplanes are lines, and they par-
tition R2 in the general case into seven regions. For N=3, the
hyperplanes are planes in R3, and in this case we found that
they divide R3 into 26 regions, as there were 26 attractors. It
is interesting to speculate on how many regions 2N−1 hyper-
planes in RN can divide RN into in the most general case,
since this number would give an upper bound on the number
of rules which a single-layer perceptron with N inputs could
learn. A simple counting argument shows that in R2 there are
again seven such regions. In this connection a result by Polya
�25� gives as 64 the number of regions which seven planes
divide R3 up into in the most general case, which indicates
that perceptrons do not partition space in the most general
way.

Note that for the general case of RN, our sufficient condi-
tion for nonlearnability of a classification can be restated in
terms of hyperplanes. In particular, let �P1 , . . . , Pr� and
�Q1 , . . . ,Qs� be points in the classes C0 and C1 and denote
their respective convex hulls by S0 and S1. Then if S0�S1
��, the classification is not learnable.

VI. CONCLUSION

Our main result is the derivation of exact averages and
variances of the convergence rates for N=2 perceptrons, and
the general polynomial form Eq. �26� of the average conver-
gence rates for perceptrons with N input vectors. Possible
future work might, beyond extending these results to include
multiperceptrons as mentioned above, include algorithms or
methods for exact calculations of the coefficients for the
polynomials given in Eq. �26�. We suggest that similar mean
convergence rate results may also be obtainable by general-
izing this approach to other types of neural networks fre-
quently used in practice. That is, one might begin by calcu-
lating the mean convergence rate for a smallest possible

TABLE II. Predicted and observed means and standard devia-
tions of the number of steps to converge from Eqs. �16�–�25� and
10 000 trials. To compare note that, e.g., the standard error of the
mean for �0,0,0,0� would be 23.98/�10 000=0.24.

Rule

Theory Simulation

Mean Standard deviation Mean Standard deviation

�0,0,0,0� 26.74 24.61 25.77 23.98

�0,0,0,1� 75.72 39.67 77.50 40.06

�0,0,1,0� 39.33 12.05 44.39 35.58

�0,0,1,1� 39.66 31.97 40.24 32.45

�0,1,1,1� 36.68 28.89 37.05 29.22
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network of a given type following a method similar to ours
used to derive Eqs. �16�–�25�, then generalizing to arbitrary
N through the use of energy or information optimization to
find the unknown coefficients in an expression analogous to
Eq. �26�. Such precise specifications for learning perfor-
mance are essential as hardwire versions of neural networks
are implemented in various mission-critical applications. For
instance, it has been shown that the perceptron learning rule
can be used as a “local learning rule” in Hopfield-like asso-
ciative memory networks �26�. In addition, bottom-up self-
assembly of molecular nanowires �27� holds promise as tech-
nologies for which neural network paradigms could be
applied to advantage. Indeed, it has been shown that agglom-
erations of conducting particles self-assemble, form electri-
cal connections, and exhibit Hebbian learning through the
principle of minimum resistance �28–30�. Hence higher pre-
cision insights into perceptron learning rates—gained by
analyzing the geometric nature of their attractors—may have
numerous practical applications.
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APPENDIX A: EQUIVALENT DYNAMICS

We prove that reflected weight trajectories are close ap-
proximations to the original trajectories. This is true for tra-
jectories reflected through the line w1=w2, which is the con-
tent of A.1, and for trajectories reflected through the origin,
as shown by A.2. These two statements, combined with the
definition of an average trajectory, yield A.3, which shows
that the appropriately reflected average dynamics coincides
for antisymmetric and opposite rules. Thus Statement A.3
gives theoretical justification for only considering 5 of the
possible 14 learnable rules in our analysis, since other mem-
bers of the respective classes have equivalent dynamics.

A.1 (antisymmetric rules). Let k and k̃ be antisymmetric
rules, then if

�w1,0
k

w2,0
k  = �w2,0

k̃

w1,0
k̃
 , �A1�

�w1,4m
k

w2,4m
k  = �w2,4m

k̃

w1,4m
k̃

, m = 0,1, . . . . �A2�

This statement says that if the initial conditions of the
weights are antisymmetric �reflected through the line w1
=w2�, then the weight trajectories of corresponding antisym-
metric rules will be antisymmetric �reflected through w1
=w2�.

Proof of statement A.1. We give a proof by induction.
Note that since the statement is true for m=0 by assumption,
it suffices to prove only the induction step. Thus we suppose
the statement is true for some m. Then we show that the

statement is true for m+1, so that by the induction hypoth-
esis, the statement will be proven. Applying Eqs. �1� and �2�
repeatedly we find for rule k:

�w1,4m+1
k

w2,4m+1
k  = �w1,4m

k

w2,4m
k  , �A3�

�w1,4m+2
k

w2,4m+2
k  = �w1,4m

k

w2,4m
k  + a�d1

k − ��w2,4m
k − t���0

1
 �A4�

=� w1,4m
k

w2,4m
k + a�d1

k − ��w2,4m
k − t��

 , �A5�

�w1,4m+3
k

w2,4m+3
k  = �w1,4m+2

k

w2,4m+2
k  + a�d2

k − ��w2,4m+2
k − t���1

0

�A6�

=�w1,4m
k + a�d2

k − ��w1,4m
k − t��

w2,4m
k + a�d1

k − ��w2,4m
k − t��

 , �A7�

�w1,4m+4
k

w2,4m+4
k  = �w1,4m+3

k + a�d3
k − ��w1,4m+3

k + w2,4m+3
k − t��

w2,4m+3
k + a�d3

k − ��w1,4m+3
k + w2,4m+3

k − t��
 .

�A8�

For rule k̃ we have by an analogous series of calculations,

�w1,4m+3
k̃

w2,4m+3
k̃

 = �w2,4m
k + a�d1

k − ��w2,4m
k − t��

w1,4m
k + a�d2

k − ��w1,4m
k − t��

 �A9�

=�w2,4m+3
k

w1,4m+3
k  , �A10�

where use was made of the antisymmetry of the initial con-

ditions and of the rules k and k̃, and Eq. �A7�. Then, for
4�m+1�=4m+4, we have, again by antisymmetry of the
rules:

�w1,4m+4
k̃

w2,4m+4
k̃

 = �w2,4m+3
k + a�d3

k̃ − ��w2,4m+3
k + w1,4m+3

k − t��

w1,4m+3
k + a�d3

k̃ − ��w2,4m+3
k + w1,4m+3

k − t��


�A11�

=�w2,4m+4
k

w1,4m+4
k  , �A12�

which verifies Eq. �A2� by the induction hypothesis.

A.2 (opposite rules). Let k and k̃ be opposite rules, then if

�w1,0
k

w2,0
k  = − �w1,0

k̃

w2,0
k̃
 , �A13�

�w1,4m
k

w2,4m
k  = − �w1,4m

k̃

w2,4m
k̃

, m = 0,1, . . . . �A14�
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This statement says that if the initial conditions of the
weights for two rules are opposite �of opposite sign�, then the
weight trajectories of corresponding opposite rules will be
opposite �reflected through the origin�.

Proof of statement A.2. We again give a proof by induc-
tion. As for A.1, the statement is true for m=0 by assump-
tion, so it suffices to prove only the induction step. Thus
suppose the statement is true for some m. Applying Eqs. �1�
and �2� repeatedly we find for rule k Eqs. �A7� and �A8�. For

rule k̃ we have

�w1,4m+1
k̃

w2,4m+1
k̃

 = − �w1,4m
k

w2,4m
k  , �A15�

�w1,4m+2
k̃

w2,4m+2
k̃

 = − �w1,4m
k

w2,4m
k  + a�d̃1

k − ��− w2,4m
k + t���0

1


�A16�

=� − w1,4m
k

− w2,4m
k + a�d̃1

k − ��− w2,4m
k + t��

 , �A17�

�w1,4m+3
k̃

w2,4m+3
k̃

 = �w1,4m+2
k̃

w2,4m+2
k̃

 + a�d̃2
k − ��w1,4m+2

k̃ + t���1

0


�A18�

=�w1,4m+2
k̃ + a�d̃2

k − ��w1,4m+2
k̃ + t��

w2,4m+2
k̃

 �A19�

=�− w1,4m
k + a�d̃2

k − ��− w1,4m
k + t��

− w2,4m
k + a�d̃1

k − ��− w2,4m
k + t��

 �A20�

=�− w1,4m
k + a�d̃2

k − �̃�w1,4m
k − t��

− w2,4m
k + a�d̃1

k − �̃�w2,4m
k − t��

 �A21�

=− �w1,4m
k + a�d2

k − ��w1,4m
k − t��

w2,4m
k + a�d1

k − ��w2,4m
k − t��

 , �A22�

thus by Eq. �A7�,

�w1,4m+3
k

w2,4m+3
k  = − �w1,4m+3

k̃

w2,4m+3
k̃

 . �A23�

When n=4�m+1�=4m+4,

�w1,4m+4
k̃

w2,4m+4
k̃


= �− w1,4m+3

k̃ + a�d̃3
k − ��− w2,4m+3

k̃ − w1,4m+3
k̃ + t��

− w2,4m+3
k + a�d̃3

k − ��− w2,4m+3
k̃ − w1,4m+3

k̃ + t��


�A24�

=�− w1,4m+3
k + a�d̃3

k̃ − ��− w2,4m+3
k − w1,4m+3

k + t��

− w2,4m+3
k + a�d̃3

k − ��− w2,4m+3
k − w1,4m+3

k + t��


�A25�

=�− w1,4m+3
k + a�d̃3

k̃ − �̃�w2,4m+3
k + w1,4m+3

k − t��

− w2,4m+3
k + a�d̃3

k − �̃�w2,4m+3
k + w1,4m+3

k − t��

�A26�

=− �w1,4m+4
k

w2,4m+4
k  , �A27�

using Eqs. �A23� and �A3�.
A.3 (average dynamics). If k and k̃ are antisymmetric or

opposite rules, then the average dynamics of k and k̃ are
equivalent. That is,

��w1,n
k 	

�w2,n
k 	

 = ��w2,n
k̃ 	

�w1,n
k̃ 	
, n = 0,1, . . . , �A28�

for antisymmetric rules, or

��w1,n
k 	

�w2,n
k 	

 = − ��w1,n
k̃ 	

�w2,n
k̃ 	
, n = 0,1, . . . , �A29�

for opposite rules, where

�wi,n	 

1

4 �
m=n

n+3

wi,m, 1 � i � N . �A30�

Proof of statement A.3. We again give a proof by induc-

tion. Suppose first that k and k̃ are antisymmetric rules. Then
from the induction assumption

��w1,n
k̃ 	

�w2,n
k̃ 	
 = ��w2,n

k 	
�w1,n

k 	
 , �A31�

we have

��w1,n+1
k̃ 	

�w2,n+1
k̃ 	

 =�
1

4 �
m=n+1

n+4

w1,m
k̃

1

4 �
m=n+1

n+4

w2,m
k̃ � �A32�

=��w1,n
k̃ 	

�w2,n
k̃ 	
 +

1

4�w1,n+4
k̃ − w1,n

k̃

w2,n+4
k̃ − w2,n

k̃


�A33�

=��w2,n
k 	

�w1,n
k 	

 + �̃ . �A34�

Then, since
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��w2,n+1
k 	

�w1,n+1
k 	

 = ��w2,n
k 	

�w1,n
k 	

 +
1

4
�w2,n+4

k − w2,n
k

w1,n+4
k − w1,n

k  �A35�

=��w2,n
k 	

�w1,n
k 	

 + � , �A36�

it suffices to verify that

4��̃ − �� = �w1,n+4
k̃ − w1,n

k̃ − w2,n+4
k + w2,n

k

w2,n+4
k̃ − w2,n

k̃ − w1,n+4
k + w1,n

k
 �A37�

=0. �A38�

Proceeding case by case for the values of n, we have first the
case n=4m, which yields

4��̃ − �� = �w1,4�m+1�
k̃ − w2,4�m+1�

k − �w1,4m
k̃ − w2,4m

k �

w2,4�m+1�
k̃ − w1,4�m+1�

k − �w2,4m
k̃ − w1,4m

k �

�A39�

=0, �A40�

by Appendix statement A.1. When n=4m+1, 4��̃−��=0 by
Eq. �A3�. If n=4m+2, then

4��̃ − ��1 = w1,4m+6
k̃ − w2,4m+2

k̃ − w2,4m+6
k + w2,4m+2

k

�A41�

=w2,4m+4
k − w2,4m+2

k − w2,4m+4
k + w2,4m+2

k

�A42�

=0, �A43�

and

4��̃ − ��2 = w1,4m+4
k + a�d2

k − ��w1,4m+4
k − t�� − w1,4m

k

− a�d2
k − ��w1,4m

k − t�� − w1,4m+4
k + w1,4m

k

�A44�

=a���w1,4m
k − t� − ��w1,4m+4

k − t�� �A45�

�0, �A46�

where Eq. �A5� was used. �The second component is
bounded by �a��1 when nonzero, and is only nonzero when
the weight trajectory crosses some regional boundary.� For

n=4m+3, 4��̃−��=0 by Eq. �A10�. Thus if Eq. �A28� is
true for n, it is true for n+1. It is true in particular for n=0,
since this is the case n=4m. Hence by the induction hypoth-
esis, Eq. �A28� is verified for all n.

Now suppose that k and k̃ are opposite rules. Assume the
statement is true for n, so that

��w1,n
k̃ 	

�w2,n
k̃ 	
 = − ��w1,n

k 	
�w2,n

k 	
 . �A47�

Then

��w1,n+1
k̃ 	

�w2,n+1
k̃ 	

 = − ��w1,n
k 	

�w2,n
k 	

 + �̃ , �A48�

and

− ��w1,n+1
k 	

�w2,n+1
k 	

 = − ��w1,n
k 	

�w2,n
k 	

 + � , �A49�

where

�̃ =
1

4�w1,n+4
k̃ − w1,n

k̃

w2,n+4
k̃ − w2,n

k̃
 , �A50�

and

� =
1

4
�w1,n

k − w1,n+4
k

w2,n
k − w2,n+4

k  . �A51�

We then proceed as for the antisymmetric rules by consider-

ing cases on n. When n=4m, 4m+1, or 4m+3, we find �̃
−�=0 using Appendix statement A.2, Eq. �A15�, or Eq.
�A23�, respectively, by exactly analogous calculations as for
the antisymmetric rules. If n=4m+2, then by Eqs. �A5� and
�A17� we get

4��̃ − ��1 = w1,4m+6
k̃ − w1,4m+2

k̃ − w1,4m+2
k + w1,4m+6

k

�A52�

=− w1,4m+4
k + w1,4m

k − w1,4m
k + w1,4m+4

k �A53�

=0, �A54�

and

4��̃ − ��2 = − w2,4m+4
k + a�d̃1

k − ��− w2,4m+4
k + t�� + w2,4m

k

− a�d̃1
k − ��− w2,4m

k + t�� − w2,4m
k

− a�d1
k − ��w2,4m

k − t�� + w2,4m+4
k

FIG. 4. �Color online� Regions A1–A7 used for calculating Eq.
�20� from Eqs. �10� and �12�. The dashed lines corresponding to
w1= t, w2= t, and w2=−w1+ t partition the initial weight vector
space into the seven regions A1–A7.
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+ a�d1
k − ��w2,4m+4

k − t��

= a�d̃1
k − �̃�w2,4m+4

k − t�� − a�d̃1
k − �̃�w2,4m

k − t��

− a�d1
k − ��w2,4m

k − t�� + a�d1
k − ��w2,4m+4

k − t��

= 0. �A55�

Since n=0 is included in the case n=4m, this completes the
induction for the opposite rules and thus the proof of state-
ment A.3.

APPENDIX B: EXAMPLE CALCULATION

In this appendix, we sketch the calculation of Eq. �20�,
using Eqs. �10� and �12�. In Fig. 4 is shown the seven dif-

ferent regions to consider. If the initial weight value is in
region A6, then all the inequalities in the third line of Table I
are satisfied, so that the weight vector is already in the at-
tractor. If, however, the weight vector is in one of the other
regions, then it will follow its trajectory to the attractor �A6�
as shown in Fig. 2�c�. Thus in order to find the integral in Eq.
�10�, the length of each possible trajectory is calculated. First
each possible trajectory is determined to yield Eq. �12�. Then
Eq. �12� is used to compute the component distances dR in
Eq. �14�, in each segment of the trajectory. Finally, the rates
rR in Eq. �14�, which give the number of steps per unit dis-
tance traveled by the weight vector, are calculated. In Table
III we give the details which were used to write down the
integral for Eq. �10�. Putting these details together, the inte-
gral for Eq. �10� was found to be


3�a,l,t� =
1

4al2��
0

t �
t−y

t

�2�x + y − t� + 3�t − x��dxdy + �
0

t �
t

t+y

��x − t� + 2�t + y − x��dxdy + �
0

t �
t+y

l

�x/2 − t/2 + y/2�dxdy

+ �
t−l

0 �
t−y

l

�x/2 − t/2 + y/2�dxdy + �
0

t �
−l

t−y

��t − y − x� + 3y�dxdy + �
−l

0 �
−l

t

�t − x�dxdy

+ �
t

l �
−l

t−y

�2�y − t� + �t − x − y� + 3t�dxdy + �
t

l �
t−y

t

�3/2�x + y − t� + �− 2x� + 3t�dxdy

+ �
t

l �
0

t

�3/2�y − t� + 2x + 3�t − x��dxdy + �
t

l �
3t/2+y/2

t/2+y/2

�2�x − t� + 4/3�t − 2x + y� + 2t�dxdy

+ �
t

l �
t/2+y/2

3t/2+y/2

��y − t� + �− t/2 + x − y/2� + 2�3t/2 − x + y/2��dxdy + �
t

l �
3t/2+y/2

l

��y − t� + �t/4 + x/2 − y/4��dxdy� .

�B1�

Integrating and simplifying this expression with MATHEMATICA then yields Eq. �20�.

TABLE III. Details utilized to determine all possible trajectories for weight vectors initially in the
different regions A1–A7. The condition violated was used to select the weight change, which in turn gave the
slope of the trajectory segment. By determining the distance dR of the complete trajectory from arbitrary
starting location to the attractor A6, and multiplying by the rate rR for each different segment, the integral of
Eq. �B1� was written down.

Region Conditions violated Weight changes Slope rR

A1 w2� t, w2�−w1+ t a�0,−1	+a�−1,−1	 2 2
a�5

A2 w1	 t, w2� t, w2�−w1+ t a�1,0	+a�0,−1	+ �−1,−1	 � 3
2a

A3 w1	 t, w2� t a�1,0	+a�0,−1	 −1
�2
a

A4 w1	 t a�1,0	 0 1
a

A5 w1	 t, w2�−w1+ t a�1,0	+a�−1,−1	 � 2
a

A7 w2�−w1+ t a�−1,−1	 1 1
a�2
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